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Recent advances in catalyst development have markedly in-
creased the utility of palladium- and nickel-catalyzed cross-coupling
reactions.1 Nevertheless, very significant challenges remain, includ-
ing expanding the scope to include couplings of unactivated alkyl
halides.2 The past several years have witnessed noteworthy progress
in this regard, largely with respect to reactions ofprimary alkyl
electrophiles.3-9 These studies have played a critical role in
dispelling the widespread belief that rapidâ-hydride elimination
might preclude the development of general methods for cross-
coupling alkyl halides.

Unfortunately, primary alkyl halides represent only a fraction
of the alkyl halide coupling partners that are of interest to synthetic
chemists. Secondary alkyl halides comprise a second, very sub-
stantial subset. Due to a variety of issues, including slow oxidative
addition and comparatively rapid elimination to an olefin, the cross-
coupling of secondary alkyl electrophiles is a relatively difficult
challenge. To date, unactivated secondary alkyl halides have only
been successfully coupled with organozinc10 and organoboron11

compounds, as well as less functional-group-tolerant Grignard
reagents.12

To exploit the full potential of cross-couplings of alkyl electro-
philes, it is critical, as it is for couplings of aryl and vinyl
electrophiles, that it be possible to employ a broad spectrum of
organometallic reaction partners. Organosilicon compounds have
become increasingly popular partners in cross-couplings of aryl and
vinyl halides due to attractive features such as ready availability,
low toxicity, and high functional-group tolerance.13,14 Cognizant
of these attributes, we decided to pursue the development of a
method for coupling unactivated secondary alkyl halides with
organosilicon reagents, and in this communication we describe a
nickel-based catalyst that accomplishes this objective (eq 1;
bathophenanthroline) 4,7-diphenyl-1,10-phenanthroline). To the
best of our knowledge, there have been no previous reports of
nickel-catalyzed cross-couplings of organosilicon compounds with
organic (alkyl, vinyl, or aryl) halides.

The conditions that we have found useful for Negishi (cat. Ni-
(cod)2/s-Bu-Pybox)10 and Suzuki (cat. Ni(cod)2/bathophenanthroline;
KOt-Bu)11 reactions of secondary alkyl bromides proved to be
ineffective for the cross-coupling of cyclohexyl bromide with
trifluorophenylsilane (<5% yield).15 Fortunately, by investigating
a variety of reaction parameters, we were able to develop a method
that cleanly achieves the desired coupling (Table 1, entry 1).

Entries 2-11 of Table 1 provide information on the impact of
several key variables on the efficiency of this new cross-coupling
process. As expected, in the absence of NiBr2‚diglyme, no carbon-

carbon bond formation occurs (entry 2). Replacement of NiBr2‚
diglyme with NiBr2 (entry 3) or Ni(cod)2 (entry 4) leads to a modest
drop in yield, whereas substitution with a palladium complex (e.g.,
Pd(OAc)2 or Pd2(dba)3) results in a loss of cross-coupling activity
(entry 5). The observation that a Ni(II) complex can serve as an
effective catalyst for cross-couplings of secondary alkyl electro-
philes is quite noteworthy from a practical point of view, since
NiBr2‚diglyme is significantly less expensive than Ni(cod)2 and,
perhaps more importantly, is air-stable.

In the absence of bathophenanthroline (Table 1, entry 6) or in
the presence of a 2.3:1 ratio of bathophenanthroline:Ni (entry 7),
no cyclohexylbenzene is produced. Ligands that are structurally
related to bathophenanthroline, such as 1,10-phenanthroline (entry
8) and 2,2′-bipyridine (entry 9), can be employed, although the
yields are slightly lower. In the absence of CsF (entry 10) or in the
presence of other fluoride sources (e.g., KF or TBAF; entry 11),
essentially no coupling occurs.16,17

As illustrated in Table 2, NiBr2‚diglyme/bathophenanthroline can
be applied to cross-couplings of an array of cyclic and acyclic
secondary alkyl bromides.18-20 Carbon-carbon bond formation
proceeds smoothly in the presence of a variety of functional groups,
including ethers (entry 7), imides (entry 9), ketones (entry 10), and
carbamates (entry 11). Furthermore, alkyl bromides are selectively
coupled in preference to aryl (entry 12) and alkyl (entry 13)
chlorides. An electronically and sterically diverse set of trifluoro-
arylsilanes are suitable coupling partners.

We were pleased to determine that this method can also be
applied to cross-couplings of secondary alkyl iodides (Table 3, entry
1), primary alkyl bromides (entry 2), and primary alkyl iodides
(entry 3). These examples establish the compatibility of functional

Table 1. Effect of Reaction Parameters on the Efficiency of the
Cross-Coupling of Cyclohexyl Bromide with Trifluorophenylsilane

entry change from the standard conditions yield (%)a

1 none 86
2 no NiBr2‚diglyme <5
3 NiBr2 [instead of NiBr2‚diglyme] 74
4 Ni(cod)2 [instead of NiBr2‚diglyme] 63
5 Pd(OAc)2 or Pd2(dba)3 [instead of NiBr2‚diglyme] <5
6 no bathophenanthroline <5
7 15% bathophenanthroline <5
8 1,10-phenanthroline [instead of bathophenanthroline] 70
9 2,2′-bipyridine [instead of bathophenanthroline] 76
10 no CsF <5
11 KF or TBAF‚3H2O [instead of CsF] <5

a Yield according to GC, versus a calibrated internal standard (average
of two runs).
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groups such as lactones, acetals, and nitriles with the reaction
conditions.

In summary, we have developed the first metal-catalyzed cross-
couplings of organosilicon compounds with secondary alkyl halides.
Two noteworthy features of the method are its high functional-
group compatibility and the air stability of the catalyst components.
Primary alkyl halides can also be coupled by this catalyst.
Additional efforts to expand the scope of metal-catalyzed cross-
coupling reactions of alkyl electrophiles are underway.
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Table 2. Nickel-Catalyzed Cross-Couplings of Secondary Alkyl
Bromides with Trifluoroarylsilanes (eq 1)

a Isolated yield, average of two runs.b Starting material: exo/endo)
96/4; product: exo/endo) 94/6. c Starting material: exo/endo) 6/94;
product: exo/endo) 95/5. d 9% NiBr2‚diglyme, 10% bathophenanthroline.
e Starting material: cis/trans) 95/5; product: cis/trans) 55/45.

Table 3. Nickel-Catalyzed Cross-Couplings of Alkyl Halides with
Trifluoroarylsilanes

a Isolated yield, average of two runs. For the reaction conditions, see eq
1. b 9% NiBr2‚diglyme, 10% bathophenanthroline, the starting material and
the product are exclusively the exo isomer.
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